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Abstract

An algorithm is developed for the identification of linear time-varying (LTV) multiple degrees-of-freedom systems. It is

based on the Hilbert transform and the empirical mode decomposition with forced vibration response data. The proposed

identification algorithm is applied to single degree-of-freedom and multi-degrees-of-freedom dynamic systems. Three ideal

cases of LTV systems, with smoothly varying, abruptly varying and periodically varying stiffness and damping, are studied

to illustrate the capability of the algorithm to track the variations of the system. Simulation results demonstrate the

effectiveness and the robustness of the proposed identification algorithm, and the lack of complete orthogonality for any

two intrinsic mode functions is one of the sources of error in the identification.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The identification of linear time-varying (LTV) system has received increasing attention in recent years
because most structures exhibit time-varying dynamic characteristics. The LTV models are more appropriate
and better than the linear time-invariant (LTI) models for describing the instantaneous dynamic behaviors of
systems [1]. The identification techniques of LTV have been successfully used to assess the condition of the
system or to detect structural damage. Various identification techniques have been proposed using discrete-
time state-space identification algorithms [2–5], wavelet transform theory [6–7], the adaptive tracking method
[8–10] and Hilbert transform (HT) method [11–13].

In a previous work by the authors [13], an identification algorithm for LTV dynamic systems based on the
Hilbert transformation and empirical mode decomposition (EMD), has been developed and verified with free
vibration response data. Three ideal cases of single degree-of-freedom (sdof) and multiple degrees-of-freedom
(mdof) time-varying systems, namely, the smoothly varying system, abruptly varying system and periodically
varying system, are studied to demonstrate the identification process and its effectiveness.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In this paper we will use the HT and EMD to further develop the identification algorithm for the LTV
system from the forced vibration response data. The paper is organized as follows. Section 2 introduces the
basic theory of the EMD and its orthogonality. Section 3 develops the identification algorithm for the LTV
mdof systems via forced vibration response data. Section 4 demonstrates the identification procedure with
numerical examples and discusses the effectiveness and accuracy of the proposed method. Conclusions are
presented in Section 5.
2. The EMD

One of the common approaches to study the time-varying dynamic properties of a system, such as the
instantaneous frequency, is the HT [11–12]. In order to obtain meaningful instantaneous frequency, restrictive
requirements have to be imposed on the data, i.e., the data should be an intrinsic mode function (IMF). The
IMF is a function that satisfies two conditions: (1) in the whole range of data, the number of extrema and the
number of zero crossing must either equal or differ at most by one and (2) at any point, the mean value of the
envelope defined by the local maxima and the envelope defined by the local minima is zero. Unfortunately,
most of the data are not IMFs, and that is why the HT cannot provide full description on the frequency
content for data in general.

Huang et al. [1] have proposed a method of EMD to decompose a general signal into IMFs resulting in well-
behaved HT. The procedure of EMD is (1) to identify all the local maxima and minima of the signal and to
construct the upper and lower envelopes of the signal by cubic splines; (2) to compute the mean of upper and
lower envelopes, and to subtract this mean from the original signal. These two steps are known as the sifting
process; (3) to repeat the sifting process until the resulting signal satisfies the above two conditions for an IMF.
This signal is then suitable for HT analysis and (4) to form a new signal by subtracting the IMF from the
original signal, and repeat Steps 1–3 to obtain another IMF. The process is repeated until the residual
signal becomes small and is less than a pre-determined value or the residual signal becomes a monotonic
function.

For an n degrees-of-freedom system, n IMFs can be obtained after the sifting process. The original signal
can be expressed as

yðtÞ ¼
Xn

j¼1

yjðtÞ þ rðtÞ (1)

in which (yj(t), j ¼ 1,2,y,n) are the IMFs of the original signal, and r(t) is the residue, which is a monotonic
function from which no more IMF can be extracted.

As discussed in Ref. [1], the orthogonality of the IMFs based on EMD is not guaranteed theoretically. For
example, there are two Stokian waves each having many harmonics. If the frequency of one Stokian wave
coincides with the frequency of a harmonic of the other, then the two waves are no longer orthogonal.
However, the EMD can still separate the two Stokian waves as two IMFs. But the separated IMF components
are not orthogonal. Fortunately, for most real time-varying dynamic system, the response signal consists of
many components. The frequency of each component is time-dependent, but it does not coincide with the
frequency of another component. Therefore, orthogonality is approximately satisfied in practical sense.

However, leakage occurs in the decomposition of signal using the EMD method. To check the
orthogonality of the IMFs obtained from EMD, an index of orthogonality for any two components yf(t)
and yg(t) is defined as

IOfg ¼
1

T

XT

t¼0

jyf ðtÞygðtÞj

y2
f ðtÞ þ y2

gðtÞ
(2)

Leakage found in EMD method is typically less than 1%. For extremely short data, the leakage could be as
high as 5%, which is comparable to that for a set of pure sinusoidal waves of the same data length [1].
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Therefore, in most cases encountered, the leakage is small and the following condition is approximately
satisfied

yf ðtÞ � ygðtÞ � 0 ðfagÞ (3)

indicating orthogonality for the pair of IMFs.

3. Identification algorithm based on forced vibration data

The equation of motion of an mdof LTV system due to forced excitation can be expressed as

MðtÞ€yðtÞ þ CðtÞ_yðtÞ þ KðtÞyðtÞ ¼ fðtÞ (4)

in which y(t) is the displacement vector, M(t), C(t) and K(t) are (n� n) time-varying mass, damping and
stiffness matrices, respectively, and f(t) is the excitation vector. The displacement vector y(t) can be
decomposed using EMD method and expressed as the superposition of n IMFs as follows:

yðtÞ ¼
Xn

j¼1

yjðtÞ (5)

in which yjðtÞ ¼ fy1jðtÞ y2jðtÞ � � � ynjðtÞg
T is the jth IMF extracted from the displacement vector using EMD

method.

3.1. Hilbert transform

For the signal collected from the ith dof of a system, yij(t) is the jth IMF, and the HT of this IMF is denoted
by ỹijðtÞ as

ỹijðtÞ ¼ H½yijðtÞ� ¼
1

p
P

Z þ1
�1

yijðtÞ

t� t
dt (6)

where P is the Cauchy principal value. The analytical signal Yij(t) of yij(t) is expressed as

Y ijðtÞ ¼ yijðtÞ þ jỹijðtÞ ¼ Aij exp½jcijðtÞ� (7)

in which

yijðtÞ ¼ AijðtÞ cos cijðtÞ

AijðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

ijðtÞ þ ỹ2ijðtÞ
q

cijðtÞ ¼ arctan½ỹijðtÞ=yijðtÞ� (8)

where Aij(t) is the instantaneous amplitude and cij(t) is the instantaneous phase angle.
The instantaneous frequency oij(t) is the time-derivative of the instantaneous phase, defined as

oijðtÞ ¼ _cijðtÞ ¼
yijðtÞ _̃yijðtÞ � _yijðtÞỹijðtÞ

A2
ijðtÞ

¼ Im
_Y ijðtÞ

Y ijðtÞ

� �
(9)

The time-derivative of the instantaneous amplitude can be expressed as

_AijðtÞ ¼
yijðtÞ _yijðtÞ þ ỹijðtÞ _̃yijðtÞ

AijðtÞ
¼ Aij Re

_Y ijðtÞ

Y ijðtÞ

� �
(10)

The first and second derivatives of Yij(t) can be obtained from Eqs. (7) and (8) as

_Y ijðtÞ ¼ Y ijðtÞ
_AijðtÞ

AijðtÞ
þ joijðtÞ

� �
(11)
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€Y ijðtÞ ¼ Y ijðtÞ
€AijðtÞ

AijðtÞ
� o2

ijðtÞ þ j
2 _AijðtÞoijðtÞ

AijðtÞ
þ _oijðtÞ

� �" #
(12)

where

_oijðtÞ ¼ Im
€Y ijðtÞ

Y ijðtÞ

� �
� 2

_AijðtÞoijðtÞ

AijðtÞ
; €AijðtÞ ¼ AijðtÞ Re

€Y ijðtÞ

Y ijðtÞ

� �
þ o2

ijðtÞ

� �
(13)
3.2. mdof systems

According to the Bedrosian’s theorem [14] on the HT of the product of two signals, we have

H½MðtÞ€yðtÞ� ¼MðtÞH½€yðtÞ� ¼MðtÞ €̃yðtÞ

H½CðtÞ_yðtÞ� ¼ CðtÞH½_yðtÞ� ¼ CðtÞ _̃yðtÞ

H½KðtÞyðtÞ� ¼ KðtÞH½yðtÞ� ¼ KðtÞỹðtÞ (14)

Apply HT to both sides of Eq. (4), and substituting Eq. (14), Eq. (4) becomes

MðtÞ €̃yðtÞ þ CðtÞ _̃yðtÞ þ KðtÞỹðtÞ ¼ f̃ðtÞ (15)

Multiplying each term of Eq. (15) by j and adding it to the corresponding terms of Eq. (4), a differential
equation on the analytic signal is obtained as

MðtÞ €YðtÞ þ CðtÞ _YðtÞ þ KðtÞYðtÞ ¼ FðtÞ (16)

in which YðtÞ ¼
Pn

j¼1YjðtÞ, and Yj(t) is the jth analytic signal, which can be written as

YjðtÞ ¼ fY 1j ;Y 2j ; . . . ;Y njg
T (17)

Substituting Eqs. (11) and (12) for €YðtÞ and _YðtÞ in Eq. (16), we have

MðtÞ½am�YðtÞ þ CðtÞ½ac�YðtÞ þ KðtÞYðtÞ ¼ FðtÞ (18)

where [am] and [ac] are coefficients matrices, the element of which is denoted as

am
ij ¼

€AijðtÞ

AijðtÞ
� o2

ijðtÞ

" #
þ j

2 _AijðtÞoijðtÞ

AijðtÞ
þ _oijðtÞ

� �
(19)

ac
ij ¼

_AijðtÞ

AijðtÞ
þ joijðtÞ (20)

For any two IMFs, yf(t) and yg(t), they are assumed to satisfy the orthogonal relationship yf ðtÞ � ygðtÞ ¼ 0.
And from the Bedrosian’s theorem, it is easy to obtain

Yf ðtÞ � YgðtÞ ¼ 0 (21)

Multiplying the two sides of Eq. (18) with Yj
T(t), we have

YT
j ðtÞMðtÞ½a

m�YjðtÞ þ YT
j ðtÞCðtÞ½a

c�YjðtÞ þ YT
j ðtÞKðtÞYjðtÞ ¼ YT

j ðtÞFðtÞ (22)

Assuming the mass matrix is known, Eq. (22) can be simplified and written in compact matrix notation using
Eqs. (9), (10) and (13) as

Pcbc þ Pkbk ¼ Pm (23)
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in which bc ¼ fc1 c2 � � � ci � � � cng
T, bk ¼ fk1 k2 � � � ki � � � kng

T, Pc, Pk and Pm are the coefficient
matrices and vector. Elements in the jth row of these matrices are expressed as

Pc
j ¼

Y 1jac
1jY 1j

Y 1jðac
1jY 1j � ac

2jY 2jÞ þ Y 2jðac
2jY 2j � ac

1jY 1jÞ

..

.

Y i�1jðac
i�1jY i�1j � ac

ijY ijÞ þ Y ijðac
ijY ij � ac

i�1jY i�1jÞ

..

.

Y n�1jðac
n�1jY n�1j � ac

njY njÞ þ Y njðac
njY nj � ac

n�1jY n�1jÞ

2
6666666666664

3
7777777777775

T

Pk
j ¼

Y 2
1j

Y 1jðY 1j � Y 2jÞ þ Y 2jðY 2j � Y 1jÞ

..

.

Y i�1jðY i�1j � Y ijÞ þ Y ijðY ij � Y i�1jÞ

..

.

Y n�1jðY n�1j � Y njÞ þ Y njðY nj � Y n�1jÞ

2
666666666664

3
777777777775

T

(24)

Pm
j ¼ YT

j F� ðY 1jm1am
1jY 1j þ Y 2jm2am

2jY 2j þ Y ijmiam
ij Y ij þ � � � þ Y njmnam

njY njÞ

The complex equation (23) can be separated into two equations according to its real and imaginary parts, and
they are subsequently assembled in the following form:

ReðPcÞ ReðPkÞ

ImðPcÞ ImðPkÞ

" #
bc

bk

( )
¼

ReðPmÞ

ImðPmÞ

( )
(25)

The above equation is a time-dependent identification equation for mdof systems. For an n dofs LTV
system, Eq. (25) contains 2n time-varying equations. We can estimate the time-varying unknown system
parameters at any time instant t by solving this identification equation.
3.3. sdof systems

For an sdof LTV system, the above identification algorithm can be simplified because the response data
does not need to be decomposed using EMD method. The stiffness and damping coefficients can be written in
the following explicit expressions as

cðtÞ ¼ 2mh0ðtÞ; kðtÞ ¼ mo2
0ðtÞ (26)

in which o0(t) and h0(t) are the instantaneous undamped natural frequency and the instantaneous damping
coefficient of the system, respectively, as

h0ðtÞ ¼
ZðtÞ

2moðtÞ
�
_AðtÞ

AðtÞ
�

_oðtÞ
2oðtÞ

(27)

o2
0ðtÞ ¼

kðtÞ

m
¼ o2ðtÞ þ

xðtÞ
m
�

ZðtÞ _AðtÞ
moðtÞAðtÞ

�
€AðtÞ

AðtÞ
þ

2 _A
2
ðtÞ

A2ðtÞ
þ
_oðtÞ _AðtÞ
oðtÞAðtÞ

(28)
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where o(t), _AðtÞ, _oðtÞ and €AðtÞ are the instantaneous coefficients, and x(t) and Z(t) refer to the real and
imaginary parts of impact excitation and response signal ratio according to the expression

xðtÞ ¼ Re
F ðtÞ

Y ðtÞ

� �
; ZðtÞ ¼ Im

F ðtÞ

Y ðtÞ

� �
(29)
4. Simulation studies

Several numerical examples on sdof and mdof LTV dynamic systems are studied in this section to illustrate
the effectiveness and accuracy of the identification algorithm developed above. Three ideal cases of time
variation are studied, which are smooth, abrupt and periodical variations, respectively. The identification of
the varying system parameters is carried out for each of the systems using the forced vibration data. Results
are also compared with those identified using free vibration data [13]. The response signals of the systems used
in the identification are from the numerical solutions of the forced vibration differential equations using the
Newton–Raphson method. The time interval between two computational steps is Dt ¼ T=N ¼ 10

1024
.

4.1. sdof systems

This section addresses the identification of time-varying stiffness and damping coefficients of a single dof
mass–spring–damping dynamic system. The governing forced vibration equation of motion is given by

m €yðtÞ þ cðtÞ _yðtÞ þ kðtÞyðtÞ ¼ f ðtÞ

where m is the mass coefficient assumed as m ¼ 1.0 kg, c(t) and k(t) are the time-dependent stiffness and
damping coefficients, respectively, and f(t) is the impact excitation force. It should be noted that the response
is proportional to the excitation force in the present case where the LTV system parameters are assumed
independent of the excitation.

Three time-varying cases are studied:
Case 1: A smooth change of stiffness and damping coefficients, i.e., k(t) ¼ 100p2N/m, c(t) ¼ 0.7N s/m for

to2 s; k(t) ¼ 100p2�10p2tN/m, c(t) ¼ 0.7+0.15tNs/m for 2 sptp4 s and k(t) ¼ 80p2N/m, c(t) ¼ 1.0N s/m
for t44 s.

Case 2: An abrupt change of stiffness coefficient, i.e., k(t) ¼ 100p2N/m, c(t) ¼ 0.7N s/m for to1.5 s;
k(t) ¼ 60p2N/m, c(t) ¼ 0.7N s/m for 1.5 sptp3.5 s and k(t) ¼ 80p2N/m, c(t) ¼ 0.7N s/m for t43.5 s.

Case 3: A periodic change of stiffness, i.e., k(t) ¼ 100p2�10p2 sin(2pt)N/m and c(t) ¼ 1.26N s/m.
Fig. 1. sdof—Case 1: the estimated damping coefficient.
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Fig. 2. sdof—Case 1: the estimated stiffness coefficient.

Fig. 3. sdof—Case 2: the estimated stiffness coefficient.
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First the effectiveness and the robustness of the identification algorithm are studied for the case with a
smooth change of stiffness and damping coefficients. Identified results are shown in Figs. 1 and 2. In all the
figures, the dash-dot line denotes the identification result using forced vibration data, and the dotted line
denotes the identification result using free vibration data [13]. The solid line denotes the true value. These three
lines are named Impact, Free and True, respectively, in the legend of each figure. Fig. 1 gives a comparison of
the identified damping coefficient with the true value. Fig. 2 shows a comparison of the identified stiffness
coefficient with the true value. The identified damping and stiffness coefficients are found following the
variation of the true value very closely.

The identified results for the two cases with abrupt change and periodic change of stiffness coefficient are
shown in Figs. 3–5. Fig. 3 shows the identified results on the abrupt change of stiffness coefficient. Results
illustrate that the estimated values closely track the abrupt changes of the true stiffness in the time duration,
and there is large fluctuations before and after the time instances of abrupt change at t ¼ 1.5 and 3.5 s. Similar
tracking capability is also demonstrated in Fig. 4 on the periodically varying stiffness. The identified damping
coefficient in Fig. 5 keeps track of the true value c ¼ 1.26 in the whole duration of identification with small
fluctuations.
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Fig. 4. sdof—Case 3: the estimated stiffness coefficient.
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Fig. 5. sdof—Case 3: the estimated damping coefficient.

Fig. 6. Two dofs linear time-varying system.
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4.2. Two degrees-of-freedom systems

The two dofs LTV system for numerical investigation is shown in Fig. 6. The two stiffness coefficients and
the two damping coefficients are time-dependent, while the mass coefficients are assumed constant. In the
following numerical examples, the mass coefficients are assumed constant at m1 ¼ m2 ¼ 50 kg. The three cases
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of time variation, namely, the smoothly varying, periodically varying and abruptly varying systems, are
studied to verify the ability and robustness of the identification algorithm for the mdof systems.

An impact excitation is applied to mass m1. The vibration response signal is calculated based on the
governing differential equations using the Newton–Raphson method. The identification algorithm for mdof
systems is different from that for the sdof systems. For the latter case, the response signal can be directly
analyzed using HT and then used to identify the time-varying parameters of the sdof system. However for the
mdof systems, the response signal must be decomposed using EMD method to extract the IMF, which is
suitable for analysis with the HT. The procedure for identification of an mdof system consists of the following
steps:
�
 Step 1: Decompose the response signal (displacement, velocity or acceleration response) to extract all IMFs
using EMD method according to steps listed under Section 2.

�
 Step 2: Analyze each IMF with HT and compute all time-dependent coefficients of the instantaneous

amplitude, instantaneous frequency and their time-derivatives using Eqs. (9), (10) and (13).
Fig. 7. mdof—Case 4: the estimated stiffness coefficient k1(t).

Fig. 8. mdof—Case 4: the estimated stiffness coefficient k2(t).
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�
 Step 3: Calculate each element of the coefficient matrices Pc, Pk and Pm according to Eq. (24), and form the
identification equation (25).

�
 Step 4: Estimate the stiffness and damping coefficients from Eq. (25) for each time instant t.
The identification algorithm is developed based on the orthogonal relationship for any two IMFs. The
degree of orthogonality of any two IMFs will affect the identification results of the mdof systems, and it will be

discussed in the following section.

The parameters of the three time-varying systems are:
Case 4: An LTV system with smoothly varying stiffness. The stiffness coefficients are given by

k1 ¼ 40 053N/m, k2 ¼ 87 552N/m when to2 s; k1 ¼ 40 053N/m, k2 ¼ 87 552�8755.2tN/m when 2 sptp4 s
and k1 ¼ 40 053N/m, k2 ¼ 70 042N/m when t44 s. The damping coefficients are assumed as c1 ¼ 30N s/m,
c2 ¼ 0.0N s/m.
Fig. 9. mdof—Case 4: the estimated damping coefficient c2(t).

Fig. 10. mdof—Case 5: the estimated stiffness coefficient k1(t).
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Case 5: An LTV system with abruptly varying stiffness. The stiffness coefficients are given by
k1 ¼ 40 053N/m, k2 ¼ 87 552N/m when tp3 s and k1 ¼ 36 048N/m, k2 ¼ 70 042N/m when t43 s. The
damping coefficients are assumed constant as c1 ¼ 30N s/m, c2 ¼ 0.0N s/m.

Case 6: An LTV system with periodically varying stiffness. The stiffness coefficients are given by
k1 ¼ 40 053N/m, k2 ¼ 87 552N/m when to2 s and k1 ¼ 40 053� 4005:3 sinðptÞN=m, k2 ¼ 87 552N/m when
tX2 s. The damping coefficients are assumed constant as c1 ¼ 30N s/m, c2 ¼ 0.0N s/m.

Based on the identification algorithm proposed in this paper and in Ref. [13], the stiffness and damping
coefficients for the above cases are estimated using forced vibration data and free vibration data. All identified
results are compared with the true value. Case 4 is investigated to demonstrate the capability of the
identification algorithm to track the smooth variation of the system, and the results are shown in Figs. 7–9.
Figs. 7–9 show the identified stiffnesses k1(t), k2(t) and the damping coefficient c2(t), respectively. Case 5 is
studied to further illustrate the ability of the identification method for tracking an abrupt variation in the
system. The comparison of the estimated stiffnesses k1(t), k2(t) and the damping coefficients c1(t), c2(t) with the
corresponding true value are shown in Figs. 10–13, respectively. The performance of the identification
Fig. 11. mdof—Case 5: the estimated stiffness coefficient k2(t).

Fig. 12. mdof—Case 5: the estimated damping coefficient c1(t).
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Fig. 13. mdof—Case 5: the estimated damping coefficient c2(t).

Fig. 14. mdof—Case 6: the estimated stiffness coefficient k1(t).
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algorithm to track the periodic variation is investigated using Case 6. Figs. 14 and 15 illustrate the comparison
of the estimated stiffness k1(t) and k2(t) with the corresponding true value, and Fig. 16 shows the comparison
of the identified damping coefficient c2(t) with the true value c2 ¼ 0.0N s/m.

The identified results are accurate and they fluctuate close to the true values. The error of identification in
the parameters at the instance of abrupt change for Case 5 is large, but the identified values fluctuate around
the true values in the remaining time duration. The proposed algorithm has good capability of tracking the
variations of the system parameters of an mdof even for the case with abrupt changes in the parameters.

4.3. A four-story shear-beam building model

A four-story shear-beam building model is shown in Fig. 17. The mass coefficients are assumed constant at
m1 ¼ m2 ¼ m3 ¼ m4 ¼ 10 kg. The stiffness and damping coefficients are time-dependent. The initial four
stiffness coefficients and damping coefficients are k1 ¼ 116 000, k2 ¼ 96 000, k3 ¼ 76 000, k4 ¼ 56 000N/m,
and c1 ¼ 34.8, c2 ¼ 28.8, c3 ¼ 28.8, c4 ¼ 28.8N s/m, respectively.
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Fig. 15. mdof—Case 6: the estimated stiffness coefficient k2(t).

Fig. 16. mdof—Case 6: the estimated damping coefficient c2(t).

Z.Y. Shi et al. / Journal of Sound and Vibration 321 (2009) 572–589584
Three time-varying cases, i.e., the smoothly, periodically and abruptly varying scenarios, are studied to
verify the ability and robustness of the identification algorithm.

Case 7: An LTV system with smoothly varying stiffness. The stiffness coefficients are given
by k1(t) ¼ 116 000, k3(t) ¼ 76 000N/m when to2 s; k1ðtÞ ¼ 116 000� 7600ðt� 2Þ, k3 ¼ 76 000� 5000ðt� 2Þ
N=m when 2 sptp5 s and k1(t) ¼ 93 200, k3(t) ¼ 61 000N/m when t45 s. The other two stiffness coefficients
are assumed as constant at their initial values.

Case 8: An LTV system with abruptly varying stiffness. The stiffness coefficients are given by
k1(t) ¼ 116 000N/m when tp2 s and k1 ¼ 81 200N/m when t42 s. The other stiffness coefficients are
assumed as constant at their initial values.

Case 9: An LTV system with periodically varying stiffness. The stiffness coefficients are given
by k1(t) ¼ 116 000, k2(t) ¼ 96 000N/m when to2 s and k1ðtÞ ¼ 116 000� 25 000 sin½2pðt� 2Þ�, k2ðtÞ ¼

96 000� 20 000 sin½2pðt� 2Þ�N=m when tX2 s. The other stiffness coefficients are assumed as constant at
their initial values.
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An impact excitation is applied to masses m2 and m4 of the shear-beam building model. The vibration
response signal is calculated based on the governing differential equations using the Newton–Raphson
method. The identification procedure has been described in Section 4.2 in four steps.

The stiffness and damping coefficients for the above cases are identified using response data under impact
excitation and free vibration data. All identified results are compared with the true values. The dash-dot line
denotes the identification result using forced vibration data, and the dotted line denotes the identification
result using free vibration data. The solid line denotes the true value. These three lines are named Impact, Free
and True, respectively, in the legend of each figure. Case 7 shows the ability of the identification method for
tracking the smooth variation of the system. Fig. 18 shows the comparison of the identified stiffness coefficient
k1(t) using the third IMF. The stiffness coefficient k3(t) identified using the fourth IMF is shown in Fig. 19.
There is a small time delay in the change of the stiffness similar to the observation on the results for Case 4 in
Fig. 8. Case 8 is investigated to demonstrate the capability of the identification algorithm for tracking
an abrupt variation in the system. The comparison of the stiffness coefficients k1(t) estimated using all
IMF extracted from impact and free response data with the corresponding true value are shown in Fig. 20.
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C3 (t)
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m1
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Fig. 17. A four-story shear-beam building model.
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Fig. 18. mdof—Case 7: the estimated stiffness coefficient k1(t).
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Fig. 19. mdof—Case 7: the estimated stiffness coefficient k3(t).
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Fig. 20. mdof—Case 8: the estimated stiffness coefficient k1(t).
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The fluctuation at the time instance of stiffness change is larger from the impact induced response than the free
vibration response, but the identified results varies gently around the true value in the other time instances.
The performance of the identification algorithm to track the periodic variation is investigated using Case 9.
Figs. 21 and 22 illustrate the comparison of the stiffness k1(t) estimated using first IMF and four IMFs,
respectively, with the corresponding true value. The comparison of the stiffness k2(t) estimated using all IMFs
with the corresponding true value is shown in Fig. 23. These figures show that using either a single or multiple
IMFs can yield good results on the stiffness change. The variation of the damping coefficients are similar to
those shown for the two dofs system and are not shown here.

The stiffness coefficients identified using free response data are more accurate than those identified
using the impact-induced response data. However, all estimated stiffness coefficients fluctuate close to the
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Fig. 21. mdof—Case 9: the estimated stiffness coefficient k1(t).
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Fig. 22. mdof—Case 9: the estimated stiffness coefficient k1(t).
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corresponding true values. The error of identified stiffness coefficients is small except at the time instance of
abrupt change for Case 8. Results show that the proposed algorithm has good capability of tracking the
variations of the system parameters of an mdof even for the case with abrupt changes in the parameters.

4.4. Orthogonality of IMFs

It is noted that the identified results for mdof systems are less accurate than those for sdof systems, and are
also less accurate than results identified using free vibration data. It is suspected that the assumption of
orthogonality between any two IMF in Eq. (3) in the development of the presented identification algorithm
leads to this error. A study is made on the orthogonality index of any two IMFs for the three types of mdofs
systems, and they are given in Table 1. Each index is calculated from Eq. (3), and the IMFs are decomposed
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Fig. 23. mdof—Case 9: the estimated stiffness coefficient k2(t).

Table 1

Orthogonal index values of three ideal cases for mdof systems.

Response signal Case 4 (%) Case 5 (%) Case 6 (%)

Displacement response 1.10 1.15 1.09

Velocity response 1.21 1.27 1.21

Acceleration response 1.00 1.07 0.98

Z.Y. Shi et al. / Journal of Sound and Vibration 321 (2009) 572–589588
from the response signal of displacement, velocity and accelerate response signals. It is observed that all the
orthogonal indices are small around 1%, but they are not equal to zero. This shows that the decomposed
IMFs are not completely orthogonal, and this type of error in the orthogonality property would be a
significant source of error affecting the accuracy of the identification results.

5. Conclusions

An identification algorithm for linear time-varying (LTV) mdof dynamic system has been developed based on
the Hilbert transform and the empirical mode decomposition method using forced vibration response time
histories. The orthogonality of any two intrinsic mode functions extracted from the response signal is studied
and discussed. The identification algorithm is applied to three ideal cases, namely, the smoothly varying,
periodically varying and abruptly varying stiffness and damping of the LTV system, to investigate the capability
of tracking these variations. All estimated results are compared with those identified using free vibration
response based on the identification approach in Ref. [13]. It is noted that the lack of complete orthogonality of
any two IMFs affects the accuracy of the identification results. However, simulation results show that the
proposed identification algorithm is still effective and robust to identify the time-dependent stiffness and
damping coefficients of both the single degree-of-freedom system and the multiple degrees-of-freedom system.
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